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Abstract. A discrete delay is included to model the time between the capture
of the prey and its conversion to viable biomass in the simplest classical Gause

type predator-prey model that has equilibrium dynamics without delay. As the

delay increases from zero, the coexistence equilibrium undergoes a supercritical
Hopf bifurcation, two saddle-node bifurcations of limit cycles, and a cascade

of period doublings, eventually leading to chaos. The resulting periodic orbits

and the strange attractor resemble their counterparts for the Mackey-Glass
equation. Due to the global stability of the system without delay, this compli-

cated dynamics can be solely attributed to the introduction of the delay. Since
many models include predator-prey like interactions as submodels, this study

emphasizes the importance of understanding the implications of overlooking

delay in such models on the reliability of the model-based predictions, espe-
cially since temperature is known to have an effect on the length of certain

delays.

1. Introduction. A Gause type predator-prey model with response function f(x)
is given by ẋ(t) = rx(t)

(
1− x(t)

K

)
− y(t)f(x(t)),

ẏ(t) = −sy(t) + Y y(t)f(x(t)),

(1)

where x(t) denotes the density of the prey population and y(t) the density of preda-
tors. Parameters r, K, s, and Y are positive constants denoting the intrinsic growth
rate and the carrying capacity of the prey, the death rate of the predator in the
absence of prey, and the growth yield constant for the conversion of prey to viable
predator density, respectively.

If f(x) is of Holling type I form in model (1) (i.e. f(x) = mx where m is a positive
constant denoting the maximal growth rate of the predator), it is well-known (see
e.g. [2, 9]) that either the predator population approaches extinction and the prey
population approaches its carrying capacity, or the predator population and the
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prey population coexist and their density approaches a positive equilibrium. Hence,
for all choices of the parameters, all solutions of this system approach a globally
asymptotically stable equilibrium, and so any nontrivial oscillatory behaviour that
arises due to the introduction of delay in the model can be attributed solely to
the delay. For this reason, we choose Holling type I response functions instead of
the more realistic Holling type II form, since the Holling type II form results in a
model that gives rise to nontrivial period solutions without delay (see Rosenzweig
[25]). One would also expect that any exotic dynamics that the model with Holling
type I form admits due to the introduction of delay would be shared by the model
with Holling type II form. Li et al. [19] studied this model with the Holling type
II response function of Monod form and showed that stability switches caused by
varying the time delay are accompanied by bounded global Hopf branches, and they
proved that when multiple Hopf branches exist, they are nested and the overlap
produces coexistence of two or possibly more stable limit cycles. However, they did
not go on to discover the even richer dynamics that our analysis suggests exists in
that case.

Incorporating a time delay in (1) to model the time between the capture of the
prey by the predator and its conversion to viable predator biomass, in the case of
Holling type I functional response, f(x) = mx, m > 0, we obtain the following
system: ẋ(t) = rx(t)

(
1− x(t)

K

)
−my(t)x(t),

ẏ(t) = −sy(t) + Y e−sτmy(t− τ)x(t− τ).

(2)

The term e−sτy(t − τ) represents those predators that survive the τ ≥ 0 units of
time required to process the prey captured at time t− τ in the past. Thus, we have
incorporated the delay in the growth term of the predator equation in a manner
that is consistent with its decline rate given by the model, as described in Arino,
Wang, and Wolkowicz [1].

We define R+ ≡ {x ∈ R : x > 0}, intR+ ≡ {x ∈ R : x > 0}. We denote by
C([−τ, 0],R+), the Banach space of continuous functions from the interval [−τ, 0]
into R+, equipped with the uniform norm. We assume initial data for model (2) is
taken from

X = C([−τ, 0],R+)× C([−τ, 0],R+). (3)

Model (2) also has other interpretations. Gourley and Kuang [12] studied a stage-
structured predator-prey model in which they included an equation for the juvenile
predators and assumed a constant maturation time delay, i.e., they assumed that
the juvenile predators take a fixed time to mature. Using the approach developed in
Beretta and Kuang [3], the authors considered the possibility of stability switches,
and concluded that there is a range of the parameter modeling the time delay
for which there are periodic solutions. If the juveniles in their model suffer the
same mortality rate as adult predators, their model decouples and yields model
(2). Forde [8] also considered this model and conjectured that there are periodic
orbits whenever the interior equilibrium exists and is unstable. He also noted that
if the interior equilibrium exists and is asymptotically stable without delay, then
for small delays it remains globally asymptotically stable. We show that whenever
the interior equilibrium exists and is unstable, the system is uniformly persistent.
Gourley and Kuang [12] had already showed that a Hopf bifurcation eventually
occurs if the delay is increased, destabilizing this equilibrium and giving birth to a
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nontrivial periodic solution. Forde [8] left as an open question whether more than
one periodic orbit is possible and provided a numerical example suggesting chaos is
possible but does not consider the route to chaos. We give numerical evidence that
there is a range of parameters for which two stable periodic orbits and an unstable
periodic orbit all exist and we show a period-doubling route to chaos followed by a
period-halfing route back to stability of the interior equilibrium.

Cooke, Elderkin, and Huang [4] considered a model similar to the one in Gour-
ley and Kuang [12], and obtained results concerning Hopf bifurcation of a scaled
version. The scaling they used eliminated the parameter modelling the time delay,
the parameter that we focus on and use as a bifurcation parameter. This simplified
their analysis, since then, unlike in our case, the components of the coexistence
equilibrium are independent of the time delay.

In this manuscript we show that the introduction of time delay cannot only
destabilize the globally asymptotically stable coexistence equilibrium of model (2),
it can also be responsible for exotic dynamics for intermediate values of the delay
as well as the eventual disappearance of the coexistence equilibrium with the ex-
tinction of the predator for large enough delays. Although chaotic dynamics has
been observed in other models of predator-prey interactions, the other models ei-
ther require at least three trophic levels, or the response functions are not as simple
and so the models admit oscillatory behavior even in the absence of delay, or the
other models incorporate the delay in such a way that the predators still contribute
to population growth even if the time required to process the prey is longer than
the life-span of the predator (i.e., the factor e−sτ is missing in the ẏ equation), or
the delay is used to model different mechanisms (see e.g., [11, 15, 24, 28]). The
observation that the resulting strange attractor resembles the strange attractor for
the Mackey-Glass equation [21] is also new.

This paper is organized as follows. In section 2, we scale the model and show that
it is well-posed. In section 3, we consider the existence and stability of equilibria.
If parameters are set so that it is possible for the predator to survive when there
is no delay, it is well-known that the equilibrium at which both the prey and the
predator survive is globally asymptotically stable with respect to positive initial
conditions (i.e. solutions approach this equilibrium for any choice of positive initial
data). In the case of delay, the components of this coexistence equilibrium depend
on the delay. We prove that for positive delay, when this equilibrium exists, both the
predator and the prey populations persist uniformly. However, a sufficiently long
delay results in the disappearance of this equilibrium, resulting in the extinction of
the predator and convergence to a globally asymptotically stable equilibrium with
the prey at carrying capacity. We give criteria which when satisfied imply that
there are at least two Hopf bifurcations that occur before the extinction of the
predator, resulting in sustained oscillatory behaviour for intermediate values of the
delay. Finally, in section 4, by means of time series, time delay embeddings, and
orbit (bifurcation) diagrams we show that there are saddle-node bifurcations of limit
cycles resulting in bistability as well as sequences of period doubling bifurcations
leading to chaos, with a strange attractor resembling the strange attractor for the
Mackey-Glass equation [21]. We conclude with a brief discussion.
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2. Scaling and basic properties of solutions. In order to simplify the analysis,
we introduce the following change of variables:

t̆ = rt, x̆(t̆) = x(t)/K, y̆(t̆) = my(t)/r,

τ̆ = rτ, s̆ =
s

r
, Y̆ = Y Km/r.

(4)

We drop the˘ ’s for convenience and study the equivalent scaled version of model
(2): 

ẋ(t) = x(t)(1− x(t))− y(t)x(t),

ẏ(t) = −sy(t) + Y e−sτy(t− τ)x(t− τ),

(x(t), y(t)) = (φ(t), ψ(t)) ∈ X, for t ∈ [−τ, 0],

(5)

where X was defined in (3).
First we address well-posedness of system (5). For positive delay τ , the existence

and uniqueness of solutions of system (5) was shown in Gourley and Kuang [12]. The
following proposition, proved in A.1, indicates that for positive delay the solutions
remain nonnegative and provides an upper bound for each component.

Proposition 2.1. Consider model (5) with initial data in X.

1. The solutions exist, are unique, and remain nonnegative for all t > 0.
2. lim supt→∞ x(t) 6 1 and lim supt→∞ y(t) 6 1

4sY e
−sτ (s+ 1)2.

3. Consider model (5) with initial data in X0 where

X0 = {(φ(t), ψ(t)) ∈ X : φ(0) > 0 & ∃ θ ∈ [−τ, 0] s.t. φ(θ)ψ(θ) > 0}. (6)

Then, x(t) > 0 for all t > 0 and there exists T > 0 such that y(t) > 0 for all
t > T .

3. Existence and stability of equilibria and uniform persistence. Model
(5) can have up to three distinct equilibria:

E0 = (0, 0), E1 = (1, 0), E+ = (x+(τ), y+(τ)) =
( s
Y
esτ , 1− s

Y
esτ
)
. (7)

The components of E+ are nonnegative and E+ is distinct from E1, if, and only
if, 0 6 τ < τc, where

τc =
1

s
ln

(
Y

s

)
. (8)

Thus, when τc > 0, i.e., when Y > s, the components of E+ are both positive, and
E+ is referred to as the coexistence equilibrium.

When there is no delay, i.e. τ = 0 in (5), E0 is always a saddle, attracting
solutions with x(0) = 0. If Y < s, one of the components of E+ is negative and
so it is not relevant, and E1 is globally asymptotically stable with respect to initial
conditions satisfying x(0) > 0 and y(0) > 0. When Y = s, E1 and E+ coalesce
and are globally attracting provided x(0) > 0. If Y > s, then E1 is a saddle
attracting solutions with x(0) > 0 and y(0) = 0 and E+ sits in intR2

+ and is global
asymptotically stable with respect to initial conditions in intR2

+.
When τ > 0, to determine the local stability of each equilibrium solution, we use

the linearization technique for differential equations with discrete delays (see Hale
and Lunel [13]). After linearizing (5) about any one of these equilibria, (x?, y?), the
characteristic equation, P (λ)|(x?,y?) = 0, is given by,

(λ+ s)(λ+ y? − (1− 2x?)) + Y e−(s+λ)τx?(1− 2x?)− λY e−(s+λ)τx? = 0. (9)
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We summarize the results on local and global stability of the equilibrium points
and uniform persistence of the populations in the following theorem. The proof can
be found in A.2.

Theorem 3.1. Consider (5).

1. Equilibrium E0 is always unstable.
2. Equilibrium E1 is

(a) unstable if 0 6 τ < τc, and

(b) globally asymptotically stable (with respect to X0) if τ > τc, (i.e. if
sesτ

Y >
1).

3. Both components of E+ are positive (i.e., E+ exists), if, and only if, 0 6 τ <
τc, (i.e.,

sesτ

Y < 1).
(a) When E+ exists and τ = 0, E+ is globally asymptotically stable with

respect to intR2
+.

(b) When E+ exists, and τ > 0, model (5) is uniformly persistent with respect
to initial data in X0, i.e., there exists ε > 0 independent of (φ(t), ψ(t)) ∈
X0 such that lim inft→∞ x(t) > ε and lim inft→∞ y(t) > ε.

Thus, for any fixed time delay τ , if s
Y e−sτ > 1, only the prey population survives

and it converges to a steady state. On the other hand, if the inequality is reversed,
for appropriate initial data both the prey and the predator populations are uni-
formly persistent, i.e. survive indefinitely. However, we have not yet addressed
what form the dynamics takes in the latter case.

3.1. Local stability of E+. When E+ exists, by Theorem 3.1 both populations
survive indefinitely. To address the possible forms the dynamics can take, we begin
by investigating the local stability of E+ when it exists, i.e., when 0 6 τ < τc, and
hence both components are positive. Evaluating the characteristic equation (9) at
E+ gives

P (λ)|E+ = λ2 + λs

(
1 +

esτ

Y

)
+
s2

Y
esτ + e−λτs

(
−λ+

(
1− 2sesτ

Y

))
= 0.

Therefore, P (λ)|E+ = 0 is of the form

P (λ)|E+
= λ2 + p(τ)λ+ (qλ+ c(τ))e−λτ + α(τ) = 0, (10)

where

p(τ) = s

(
1 +

esτ

Y

)
, q = −s, c(τ) = s

(
1− 2

sesτ

Y

)
, and α(τ) =

s2esτ

Y
, (11)

First assume that τ = 0. Then (10) reduces to

λ2 + (p(0) + q)λ+ (α(0) + c(0)) = 0.

Since α(0) + c(0) = s
(
1− s

Y

)
= sy+(0) > 0 and p(0) + q = sesτ

Y > 0, by the
Routh-Hurwitz criterion [10], all roots of (10) have negative real part. Therefore,
E+ is locally asymptotically stable when τ = 0 and hence also for τ > 0 sufficiently
small.

We consider the stability of E+ as τ varies in the interval 0 < τ < τc. Here,
P (0)|E+

= α(τ) + c(τ) = s y+(τ) > 0 and so λ = 0 is not a root of (10). Therefore,
the only ways that E+ can lose stability is: (i) when one of the characteristic
roots equals zero. This only occurs when τ = τc. This gives rise to a transcritical
bifurcation where E+ coalesces with E1 and then disappears as τ increases through
τc; (ii) if characteristic roots bifurcate in from infinity; or (iii) if a pair of complex
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roots with negative real parts and non-zero imaginary parts cross the imaginary axis
as τ increases from 0, potentially resulting in Hopf bifurcation. In A.3 we prove
that (ii) is impossible to obtain the following lemma.

Lemma 3.2. As τ increases from zero, the number of roots of (10) with positive
real part can change only if a root appears on or crosses the imaginary axis as τ
varies.

In order to determine when Hopf bifurcations occur, we first determine for what
values of τ pure imaginary roots of (10) exist so that (iii) can occur. We will also
be interested in secondary Hopf bifurcations.

Suppose that λ = iω (ω > 0) is a root of P (λ)|E+ = 0, where i =
√
−1. Then

P (iω)|E+
= −ω2 + ip(τ)ω + (iqω + c(τ))e−iτω + α(τ) = 0.

Using Euler’s identity, eiθ = cos θ + i sin θ, and equating the real and imaginary
parts, this is equivalent to

c(τ) cos(τω) + qω sin(τω) = ω2 − α(τ),

c(τ) sin(τω)− qω cos(τω) = p(τ)ω.

Solving for cos(τω) and sin(τω) gives

sin(τω) =
c(τ)(p(τ)ω) + qω(ω2 − α(τ))

c(τ)2 + q2ω2
, (12a)

cos(τω) =
c(τ)(ω2 − α(τ)) + qω(−p(τ)ω)

c(τ)2 + q2ω2
. (12b)

Squaring both sides of the equations in (12), adding, and rearranging gives

ω4 + (p(τ)2 − q2 − 2α(τ))ω2 + α(τ)2 − c(τ)2 = 0. (13)

Noting that (13) is a quadratic function of ω2, we use the quadratic formula to
obtain

ω2
±(τ) =

1

2

(
q2 − p2(τ) + 2α(τ)±

√
(q2 − p2(τ) + 2α(τ))2 − 4 (α2(τ)− c2(τ))

)
.

Substituting using (11), it follows that

ω2
±(τ) =

1

2

(
−
(
sesτ

Y

)2

±

√(
sesτ

Y

)4

+ s2
(

12
s2e2sτ

Y 2
− 16

sesτ

Y
+ 4

))
. (14)

In order to determine for what values of τ there are positive real roots of (13),
and hence candidates for pure imaginary roots, and possibly Hopf bifurcations, we
define

τ∗ =
1

s
ln

(
Y

3s

)
. (15)

We will prove that for τ > τ∗, there are no postive real roots and for 0 6 τ < τ∗

ω+(τ) =

√√√√1

2

(
−
(
sesτ

Y

)2

+

√(
sesτ

Y

)4

+ s2
(

12
s2e2sτ

Y 2
− 16

sesτ

Y
+ 4

))
(16)

is the only positive real root.

Remark 1. Note that τ∗ > 0, if, and only if, s
Y < 1

3 , and then x+(τ∗) = sesτ
∗

Y = 1
3 .
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In the following theorem, proved in A.4, we give necessary conditions on τ for
Hopf bifurcations to occur.

Theorem 3.3. Consider (5). Assume that both components of E+ are positive.

1. ω+(τ∗) = 0. If τ > τ∗, then (13) has no positive real root. Therefore, there
can be no pure imaginary roots of (10) in this case. In particular, if s

Y >
1
3 ,

then τ∗ 6 0, and so there can be no Hopf bifurcation of E+ for any τ > 0.
2. Assume that s

Y < 1
3 , and hence, τ∗ > 0. If τ ∈ [0, τ∗), then x+(τ) ∈ [ sY ,

1
3 ),

and (13) has exactly one positive real root, ω+(τ), given by (16). If (10) has
pure imaginary roots at τ , and hence τ is a candidate for Hopf bifurcation of
E+, then τ ∈ (0, τ∗) and ω+(τ) must satisfy (16).

Remark 2. 1. Note that even though ω+(0) > 0 when s
Y < 1

3 , τ = 0 is not
a candidate for a Hopf bifurcation, since in this case all roots of (10) have
negative real parts. Also, τ∗ is not a candidate, since ω+(τ∗) = 0.

2. Haque [14] finds an expression for ω+(τ∗) for a different scaling of the model.
However, he does not go on as we do in what follows, to determine when
the equations given in (12) are both simultaneously satisfied for ω+(τ∗), and
to show that the Hopf bifurcations are nested and how the number of Hopf
bifurcations increases as the death rate of the predator decreases.

Substituting the values of the coefficients given by (11), in the right-hand side of
(12), and recalling that x+(τ) = sesτ/Y , we define

h1(ω, τ) =
ω

s

(
s+ x+(τ)− sx+(τ)− 2x2+(τ)− ω2

(1− 2x+(τ))2 + ω2

)
, (17a)

h2(ω, τ) =
ω2(1 + s− x+(τ))− (1− 2x+(τ))sx+(τ)

s ((1− 2x+(τ))2 + ω2)
. (17b)

Properties of the functions h1 and h2 are summarized in A.5.

Remark 3. By Theorem 3.3 and Lemma A.1, τ satisfies (12) for ω > 0, (and hence
(10) has a pair of pure imaginary eigenvalues) if and only if τ ∈ (0, τ∗), and

sin(τω+(τ)) = h1(ω+(τ), τ), (18a)

cos(τω+(τ)) = h2(ω+(τ), τ). (18b)

Define the function
θ : [0, τ∗]→ [0, π] (19)

θ(τ) := arccos(h2(ω+(τ), τ)).

By part 3 of Lemma A.1, stated and proved in A.5, θ(τ) is a well-defined, continu-
ously differentiable function. Replacing τω+(τ) by θ(τ) + 2nπ in the left hand side
of (18), we obtain

sin(θ(τ) + 2nπ) = h1(ω+(τ), τ), (20a)

cos(θ(τ) + 2nπ) = h2(ω+(τ), τ). (20b)

Equation (20b) is satisfied directly by the definition of θ(τ). Equation (20a) is also
satisfied, from parts 1 and 2 of Lemma A.1, since 0 6 θ(τ) 6 π.

By comparing (18) and (20), it follows that solutions of (18) occur at precisely
those points where the curves τω+(τ) and θ(τ) + 2nπ intersect.

Remark 4. By Remark 3, (10) has a pair of pure imaginary roots at precisely those
points where the curves τω+(τ) and θ(τ) + 2nπ intersect for τ ∈ (0, τ∗), where n is
a nonnegative integer.
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For each integer n > 0, denote the jn points of intersection of the curves τω+(τ)
and θ(τ) + 2nπ for τ ∈ (0, τ∗), in increasing order, by τ jn, j = 1, 2 . . . , jn, i.e., for
each n = 0, 1, 2, . . . ,

τ jnω+(τ jn) = θ(τ jn) + 2nπ, j = 1, 2, . . . , jn.

Theorem 3.4. Consider system (5). The characteristic equation (10) has a pair of
pure imaginary eigenvalues, if and only if, τ = τ jn ∈ (0, τ∗), a point of intersection of
the curves τω+(τ) and θ(τ)+2nπ, for some integer n > 0. At all such intersections,
the pair of pure imaginary eigenvalues is simple and no other root of (10) is an

integer multiple of iω+(τ jn). If in addition, d
dτ (τω+(τ))

∣∣∣
τ=τjn

6= d
dτ θ(τ)

∣∣∣
τ=τjn

, the

transversality condition for Hopf bifurcation, d
dτRe(λ(τ))

∣∣∣
τ=τjn

6= 0, holds.

The proof is given in A.6.

Remark 5. If the slope of the curve θ(τ) + 2nπ is less than the slope of τω+(τ) at
an intersection point τ jn, then a pair of complex roots of (10) crosses the imaginary
axis from left to right as τ increases through τ jn. On the other hand, if the slope of
the curve θ(τ)+2nπ is greater than the slope of τω+(τ) at an intersection point τ jn,
then a pair of complex roots of (10) crosses the imaginary axis from right to left as
τ increases through τ jn.

Corollary 3.5. Consider system (5). Assume that τ ∈ [0, τ∗] and that there exists
N > 0 such that (2N + 1)π 6 maxτ∈[0,τ∗] τω+(τ) 6 2(N + 1)π.

1. For 0 6 n 6 N , θ(τ) + 2nπ and τω+(τ) have at least two intersections in
(0, τ∗).

2. For n > N + 1, θ(τ) + 2nπ and τω+(τ) do not intersect in (0, τ∗).
3. If θ(τ) + 2nπ and τω+(τ) intersect for any n > 0, then τ10 is the smallest

and τ j00 the largest value of τ for which (10) has a pair of pure imaginary
eigenvalues.

4. The coexistence equilibrium E+ is locally asymptotically stable for τ ∈ [0, τ10 )∪
(τ j00 , τc).

The proof is given in A.7.
Our results differ from those in Gourley and Kuang [12], since we give explicit

formulas for solutions of (13) and define θ(τ) explicitly. These explicit formulas play
an important role in analysis and make numerical simulations more straightforward.
Although ω2

−(τ) in equation (14) is negative in this model and hence its square root
is not real, in other models equation (13) can have two positive real solutions (see [7],
where both ω+(τ) and ω−(τ) are positive). In that case, double Hopf bifurcations
are possible.

In the next section we will demonstrate numerically that in the example shown
in Figure 1, E+ first loses its stability through a supercritical Hopf bifurcation as
τ increases through τ10 and then restabilizes as a result of a second supercritical
Hopf bifurcation as τ increases through τ20 . We will also show that between these
two values of τ there is a sequence of bifurcations resulting in interesting dynamics,
including a strange attractor.

4. An example demonstrating complex dynamics. In this section, unless
specified otherwise, we select the following values for the parameters in model (2):

m = 1, r = 1, K = 1, Y = 0.6, s = 0.02, (21)
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Figure 1. Intersections of θ(τ) + 2nπ and τω+(τ), n = 0, 1, . . . ,.
Values of τ at which the characteristic equation has pure imaginary
eigenvalues, and hence candidates for critical values of τ at which
there could be Hopf bifurcations. In both graphs, at all such in-
tersections, transversality holds, since the slope of these curves at
these intersections are different. Parameters: m = 1, r = 1, K =
1, Y = 0.6. (LEFT) s = 0.02. For n = 0 there are two intersections
(i.e. j0 = 2), at τ10 and τ20 , but for n = 1, and hence n > 1, there
are no intersections. (RIGHT) s = 0.007. There are two intersec-
tions each (i.e. jn = 2, n = 0, 1, 2), at τ1n and τ2n, for n = 0, 1
and 2, but for n = 3, and hence n > 3, there are no intersec-
tions. In both (LEFT) and (RIGHT), E+ is asymptotically stable
for τ ∈ [0, τ10 ) ∪ (τ20 , τc) and unstable for τ ∈ (τ10 , τ

2
0 ).

and consider τ as a bifurcation parameter. Since, with this selection of parameters,
the model is already in the form of the scaled version of the model (5), it is not nec-
essary to apply the scaling given by (4). We first use this example to illustrate the
analytic results given in section 3 where we provided necessary and sufficient condi-
tions for a simple pair of pure imaginary eigenvalues of the characteristic equation
to occur as τ varies. We then provide bifurcation diagrams with τ as the bifurcation
parameter, simulations including time series and time delay embeddings for various
values of τ , and a return map at a value of τ at which there is a chaotic attractor,
in order to illustrate the wide variety of dynamics displayed by the model, even
in the case when there are only two Hopf bifurcations. This includes two super-
critical Hopf bifurcations, saddle-node bifurcations of limit cycles and sequences of
period doublings that appear to lead to chaotic dynamics with a strange attrac-
tor reminiscent of the strange attractor for the well-known Mackey-Glass equation
[20, 21]

dx

dt
= β

x(t− τ)

1 + (x(t− τ))n
− γx(t).

4.1. Illustration of analytic results. For the parameters given by (21), the
model has three equilibria: E0 = (0, 0), E1 = (1, 0), that always exist, and E+ =
(x+(τ), y+(τ)) = (0.03̇e0.02τ , 1 − 0.03̇e0.02τ ), given by (7). The components of E+

are both positive, if, and only if, τ ∈ [0, τc), where τc ≈ 170 (see (8)), and by part
3(b) of Theorem 3.1 the model is uniformly persistent for τ ∈ [0, 170).
E0 is always a saddle, and hence unstable. E1 is globally asymptotically stable

for τ > τc, and unstable for τ ∈ [0, τc). For τ = 0, E+ is asymptotically stable,
and by Lemma 3.2, can only lose stability by means of a Hopf bifurcation. In
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order to determine the critical values of τ at which there is a pair of pure imaginary
eigenvalues: λ(τ) = ±iω(τ), we consider the interval (0, 115), since by Theorem 3.3,
the interval on which ω(τ) is positive, is bounded above by τ∗ ≈ 115 (defined in
(15)).

With the parameters given in (21), by (16) the function

ω+(τ) =

√√√√
−.5̇ 10−3(e0.02τ )2 +

√
1.235 10−6(e0.02τ )4 + .53̇ 10−5e0.04τ − 0.53̇e0.02τ + 4

2

and recall, by (19)

θ(τ) = arccos(cos(τω+(τ))).

The intersections of the functions τω+(τ) and θ(τ) + 2nπ, n a nonnegative integer,
in the interval (0, τ∗), give the critical values of τ for which there is a pair of
pure imaginary eigenvalues. There are only two intersections as can be seen in
Figure 1 (LEFT). Since, π < maxτ∈[0,τ∗] τω(τ) < 2π, by Corollary 3.5, we are
guaranteed at least two values of τ > 0 at which the characteristic equation has
a pair of pure imaginary roots. In fact, (see Figure 1 ((LEFT)), there are precisely
two such values, τ10 and τ20 . Using Maple [22], we found that τ10 ≈ 1.917 and
τ20 ≈ 108.365. By Theorem 3.4, the slopes of the curves θ(τ) and τω+(τ) are
different at these intersection points, since these curves cross transversally (see
Figure 1 (LEFT)), and hence the transversality required for Hopf bifurcation holds
at each root. By part 4 of Corollary 3.5 and Remark 5, the stability of E+ changes
from asymptotically stable to unstable as τ increases through τ10 and from unstable
to asymptotically stable as τ increases through τ20 , and is unstable for τ ∈ (τ10 , τ

2
0 ).

But recall, even though E+ is unstable here, by part 3(b) of Theorem 3.1, the model
is still uniformly persistent in this interval.

Thus, we have shown that for the parameters chosen, there are exactly two can-
didates for Hopf bifurcations (see [26], Chapter 6, Theorem 6.1, page 89-90). That
both Hopf bifurcations are supercritical (involving first the birth, and then the
disappearance of orbitally asymptotically stable periodic solutions) will be demon-
strated in the next section. As τ increases through τ = 1.917, a family of orbitally
asymptotically stable periodic orbits is born. We will see that these periodic or-
bits undergo additional bifurcations as τ increases, and that they disappear when
τ increases through the critical value τ = 108.365, at the second supercritical Hopf
bifurcation.

By decreasing s, the value of n for which the curves θ(τ) + 2nπ and τω+(τ)
intersect can increase. See Figure 1 (RIGHT) for an example with s = 0.007 for
which the curves θ(τ) + 2nπ and τω+(τ) intersect when n = 0, 1, 2. In fact, there
are 6 points of intersection. We see by Remark 5, that for this example, E+ is
asymptotically stable until τ = τ10 , is unstable for τ ∈ (τ10 , τ

2
0 ), and finally becomes

stable again for τ ∈ (τ20 , τc). Again, even though the model is unstable for τ ∈
(τ10 , τ

2
0 ), by part 3(b) of Theorem 3.1, it is uniformly persistent in this interval, since

the model is uniformly persistent whenever both components of E+ are positive,
i.e., for τ ∈ [0, τc).

4.2. Saddle-node of limit cycles, period doublings, and chaotic dynamics.
The computations and figures in this section were done using Maple [22], MATLAB
[23], and XPPAUT [6]

In Figure 2 (TOP), for each value of τ ∈ [0, 120], starting with initial data x(t) =
y(t) = 0.1 for t ∈ [−τ, 0], we integrate long enough for the solution to converge to an
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attractor (e.g., equilibrium, periodic orbit, or strange attractor), and then plot the
local minima and maxima of the y(t) coordinate on the attractor. Because we are
interested in period doubling bifurcations, we then eliminate certain local maxima
and minima that are due to kinks in the solutions (see Figure 3) rather than actual
bifurcations, to obtain the graph in Figure 2 (BOTTOM)). Our solutions have kinks
for values of τ ∈ [55, 98]. Kinks were also observed in the Mackey-Glass equation
[21].

Figure 2 confirms that there are two Hopf bifurcations at τ ≈ 1.917 and τ ≈
108.365, and allows us to conclude that these Hopf bifurcations are both supercrit-
ical, since they involve a family of orbitally asymptotically stable periodic orbits.

Next we focus on the more interesting dynamics observed for τ ∈ [80, 100] (see
Figure 4). There appears to be a discontinuity in the bifurcation diagram for τ ≈
82.225. Upon further investigation we have determined that there is a saddle-node
bifurcation of limit cycles at this value of τ and another saddle-node bifurcation of
limit cycles for a value of τ smaller than τ = 81. For values of τ between these two
saddle-node bifurcations, there is bistability. There are two orbitally asymptotically
stable period orbits. An example of two such orbits is given in Figure 5, where
τ = 81.

Figure 4 suggests that there are sequences of period doubling bifurcations, one
initiating from the left at τ ≈ 83, 86, 86.6, . . . , and one initiating from the right at
τ ≈ 98.3, 93.2, 92.2, and τ between 92 and 91.85. To demonstrate these sequences,
time series (y(t) versus t) and time delay embeddings (y(t) versus y(t−τ)) at values
of τ between these bifurcations are shown in Figures 6 and 7.

Figure 4 also suggests that between these sequences of period doubling bifurca-
tions there is a window of values of τ at which there are periodic attractors that do
not have a period that results from a bifurcation with period approximately equal
to 2n for some integer n, and there is chaotic dynamics. An example of the former is
illustrated in Figure 8. For τ = 90.7, the time-series embedding of a periodic orbit
with period approximately equal to 1800 time steps involving six loops (2 times 3)
is shown.

The time series and the time delay embedding of a chaotic attractor for τ = 90
is shown in Figure 9. The projection of this attractor into (x(t), y(t))-space is
also shown in Figure 10. This strange attractor resembles the chaotic attractor
of the well-known Mackey-Glass equation ([21], Figure 2). The return map shown
in Figure 11, for τ = 90, also resembles the return map for the Mackey-Glass
equation ([21], Figure 14) in the case of chaotic dynamics. Sensitivity to initial
data is a hallmark of chaotic dynamics. Figure 12(RIGHT) demonstrates that there
is sensitivity to initial data in the case of the solution for τ = 90 that converges to
the strange attractor, shown in Figure 9. To show that this is not just a numerical
artifact, in Figure 12(LEFT) we show that, as expected, there is no sensitivity for
the solution for τ = 92 that converges to the periodic solution shown in Figure 7.

This example demonstrates that including delay in a simple predator-prey model
that always has a globally asymptotically stable equilibrium point in the absence
of delay, cannot only destabilize a globally asymptotically stable equilibrium point,
but can even result in the birth of a strange attractor.

5. Discussion and conclusions. We investigated the effect of the time required
for predators to process their prey on the possible dynamics predicted by a math-
ematical model of predator-prey interaction. We incorporated a discrete delay to
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Figure 2. Orbit diagrams. Initial data was taken to be x(t) =
y(t) = 0.1 for t ∈ [−τ, 0]. However, we found bistability in the
portion of the diagram beween the vertical dots and varied the ini-
tial data as explained below. Except for the portion between the
vertical dots, the rest of the diagram was the same for all of the ini-
tial conditions we tried (not shown). (TOP) All local maxima and
minima for the y(t) coordinate of the attractor as τ varies, includ-
ing kinks. (BOTTOM) Diagram including local maxes and mins for
the y(t) coordinate as τ varies, but with kinks eliminated. There
are two saddle-node of limit cycle bifurcations. They occur for τ
approximately equal to 76 and 82, where the curves in the orbit
diagrams stop abruptly and there appear to be vertical dots. For τ
between these values, there is is bistability. Two orbitally asymp-
totically stable periodic orbits (with their maximum and minimum
amplitudes shown) and an unstable periodic orbit with amplitudes
between them (not shown). The two stable periodic orbits were
found by producing this part of the orbit diagram varying τ for-
ward and then varying it backwards but startng at the last point
of the attractor for the previous value of τ .
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Figure 3. The time series for y(t) when τ = 70, depicting kinks.
There are two local maxima and two local minima over each period
as shown in Figure 2 (TOP), but only one local maxima and one local
minima in Figure 2 (BOTTOM) in which kinks have been removed.
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Figure 4. Zoom-in of orbit diagram shown in Figure 2 for τ ∈
[75, 100] including kinks. The vertical dots indicate the boundary
of the region of bistability, where the two saddle-node of limit cycle
bifurcations occur.

model this process in one of the simplest classical predator-prey models, one that
only allows convergence to an equilibrium when this delay is ignored. We showed
that including the delay results in a model with much richer dynamics. By choosing
one of the simplest models when delay is ignored, one that predicts that no oscilla-
tory behaviour is possible, the effect of the delay on the dynamics is emphasized.
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Figure 5. Time delay embedding of two orbitally asymptotically
stable periodic orbits demonstrating bistability for τ = 81. The one
with larger amplitude (dashed) has initial data x(t) = y(t) = 0.1,
for t ∈ [−τ, 0], and period approximately 345. The one with smaller
amplitude (solid) has initial data x(t) = y(t) = 0.1, for t ∈ [−τ, 0)
and x(0) = 0.3, y(0) = 0.83 and has period approximately 273.7.

This model can also be interpreted as a model of a stage-structured population
with the delay modelling the maturation time of the juveniles (see Gourley and
Kuang [12]).

In the model we considered, the prey are assumed to grow logistically in the
absence of the predator. The interaction of the predator and prey is described
using a linear response function, often referred to as mass action or Holling type
I. It is well-known that when delay is ignored this is one of the simplest predator-
prey models for which all solutions converge to a globally asymptotically stable
equilibrium point for all choices of the parameters. Therefore, any resulting non-
equilibrium dynamics would then be solely attributable to the introduction of the
delay in the growth term of the predator. We not only found non-trivial periodic
solutions, but also bistability, and chaotic dynamics. It is then likely that there is
similar rich dynamics in most predator-prey models with any reasonable response
function, when such a delay is incorporated, for some selection of the parameters,
including the form most used by ecologists, the Holling type II form. This form
given mathematically by f(x) = mx/(1+bx)), can be considered a generalization of
the Holling type I form, obtained by simply adding an extra parameter, b. However,
we feel that demonstrating that this wide range of dynamics is possible even for one
of the simplest models gives more compelling evidence that delay should not be
ignored when making policy decisions.

Understanding how changes in average temperature might affect survivability of
endangered populations or result in invasions by undesirable populations is impor-
tant. Since temperature can affect how quickly predators process the prey that they
capture, based on our results there might be important implications for populations
in the wild. In most predator populations, the processing time, τ , is faster when
it is warmer and slower when it is colder. Our results may help us understand
how a change in average temperature might influence the dynamics of particular
predator-prey systems of interest.
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Figure 6. (LEFT) Time series starting from the initial data
x(t) = y(t) = 0.1, t ∈ [−τ, 0] indicating how quickly the or-
bit gets close to the periodic attractor and (RIGHT) time de-
lay embeddings of the periodic attractors, demonstrating the se-
quence of period doubling bifurcations initiating from the left at
τ ≈ 83, 86, and 86.6. Values of τ selected between these bifur-
cations: τ = 82, 85, 86.3, and 86.8, with periods of the periodic
attractor approximately equal to: 340.2, 564.6, 1144.5, and 2298.3,
respectively, are shown.
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Figure 7. (LEFT) Time series starting from the initial data
x(t) = y(t) = 0.1, t ∈ [−τ, 0] indicating how quickly the or-
bit gets close to the periodic attractor and (RIGHT) time de-
lay embeddings of the periodic attractors, demonstrating the se-
quence of period halfing bifurcations initiating from the left for
values of τ between 91.5 and 92, and at τ ≈ 92.2, 93.2, 98.3.
Graphs shown are for values of τ between these bifurcations:
τ = 91.95, 92, 93, 96, and 100, with periods approximately
equal to: 4794.3, 2398.3, 1211.2, 557.6, and 295.3, respectively.
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Figure 8. Time delay embedding starting at initial data x(t) =
y(t) = 0.1, t ∈ [τ, 0] for τ = 90.7 showing a periodic attractor with
period approximately 1800, having 6(6= 2n) loops for some integer
n.
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Figure 9. (LEFT) Time series for τ = 90 starting from the initial
data x(t) = y(t) = 0.1, t ∈ [−τ, 0]. (RIGHT) Time delay embedding
of the strange attractor for τ = 90. Only the portion of the orbit
from t = 240, 000− 260, 000 is shown.
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Figure 10. The strange attractor, for τ = 90, shown in Figure 9
in (x, y)-space. Only the portion of the orbit from t = 240, 000 to
260, 000 is shown.
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for y(t) < 0.7 in both cases, using the data in Figure 9.
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Figure 12. Time series (LEFT) for the solution that converges
to a periodic attractor when τ = 92, and (RIGHT) for the solution
that converges to a strange attractor when τ = 90, demonstrating
that there is no sensitivity to initial data in the former case, but
that there is sensitivity in the latter case. Initial data used for the
solid curves: x(t) = y(t) = 0.1 for t ∈ [−τ, 0], and for the dotted
curves: x(t) = 0.11 and y(t) = 0.1 for t ∈ [τ, 0].
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Our study suggests that we need to be careful when measuring population sizes
in the wild and predicting the general health of the population based upon whether
the population seems to be increasing or decreasing. Short term indications that a
population size is changing in a system with oscillatory dynamics may be misleading
and predicting future population size may be impossible without more information.
It would be necessary to have some idea of the period of the intrinsic oscillations if
the population is suspected to vary periodically. If the dynamics are suspected to
be chaotic, this may be even more complicated, due to sensitivity to initial data.

If a predator-prey system has the potential to have chaotic dynamics, based on
our results, is there anything that is predictable? Can such analyses suggest how
to prevent extinctions or invasions due to a change in average temperature that
could result in a change in the processing time of the prey by the predator? We
give some observations based on the predictions of our model and the example we
considered in Section 4. However, more work would need to be done to determine
whether these predictions are consistent for more realistic models, and if so, long
term observations would have to be made by ecologists to determine if they are
relevant for populations in the wild.

First, at the one extreme, if the processing time is too long, the predator pop-
ulation would not be expected to survive, since it is obvious that if the processing
time is longer than the life span of the predator, the predator population has no
chance to avoid extinction. If there was no such threshold for extinction predicted
by the model, the model should be abandoned. It is therefore very important to
use the term e−sτy(t− τ) and not just y(t− τ) in order to account for the predators
that do not survive long enough to affect growth of the population, in the equation
describing the growth of the predator in model (2). Due to this term, in our model
there is such a threshold, τc.

From the orbit diagram (see Figure 2), for the example considered in Section 4, we
summarize some observations. The dynamics for both populations are oscillatory for
a wide range of processing times, and non-oscillatory for only relatively (very) short
or relatively long processing times (i.e. before the first Hopf bifurcation at τ ≈ 1.9
and after the last one at τ ≈ 108). For relatively long processing times, slightly
larger than the value of τ at the final Hopf bifurcation of the coexistence equilibrium,
the population is no longer oscillatory. The size of the predator population decreases
relatively slowly as the processing time increases further. Although the size of the
predator population gets smaller as the processing time increases, it does not get
much smaller, until the processing time gets close to the threshold for extinction
τc. If we had shown the diagram extended to the threshold τc = 170, one would
see that as the processing time gets close to τc, the size of the predator population
suddenly decreases relatively quickly to zero. So our model predicts that for a
predator population with fairly long processing times to begin with, cooling of the
environment could be expected to be detrimental with respect to the survivability
of the predator population. Thus, this effect on the size of the predator population
might be minor if the delay is close to its Hopf bifurcation value, but could be
drastic if it is close to the extinction value.

Our example also suggests that the predator population may not be oscillatory
when it becomes endangered and hence close to extinction, i.e., for excessively
long processing times. It would be interesting to investigate if this also holds for
the model, with Holling type I response functions replaced by Holling type II. In
the model with Holling type II response functions, if the carrying capacity of the
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environment for the prey is not affected by the cooling and it is relatively high,
then the model predicts that the predator population could still be oscillatory, even
if the processing time for the predator is ignored. However, cooling might also be
expected to reduce the carrying capacity for the prey, moving the parameters to a
range where that model would also predict non-oscillatory dynamics (the paradox
of enrichment [25]). So once again, perhaps alarm bells should be sounded when
there is cooling and the predator population has been non-oscillatory and appears
to decline rapidly as the average yearly temperature declines.

On the other hand, at the other extreme, our model predicts a Hopf bifurcation
at a relatively small value of the delay, resulting in the birth of a family of periodic
orbits with amplitude increasing very quickly as the delay increases with both the
prey and predator populations spending time very close to zero. This remains the
case for small, but intermediate values of the delay, (before the two saddle node
of limit cycles bifurcations near τ = 80). For this range of τ , these populations
are therefore very susceptible to stochastic extinctions. If the processing time was
originally very small (below the critical value for the first Hopf bifurcation) and
cooling made it longer, again a stochastic extinction might be likely. Similarly, if τ
was close to the first of the two saddle node of limit cycles bifurcations near τ = 80),
warming of the average temperature could result in a stochastic extinction of one
or both of the populations. Since the predator cannot survive without the prey
in our model, even if it was the prey population that experienced the stochastic
extinction, the predator population would eventually die out as well. Between the
smallest value of τ at which there is a period doubling bifurcation, and the value of
τ at the largest Hopf bifurcation, cooling would probably be advantageous to the
predator population size.

In summary, it seems that whether cooling is beneficial or detrimental to the
size of the predator population depends on where the delay is on the bifurcation
diagram, and it is very likely that this is very difficult to determine. As well, if
values of τ were to lie in the chaotic region, then changes in the environment that
changed the value of τ to obtain regular oscillatory dynamics may or may not be
preferable. As well, as can be seen by the various attractors shown in Figures 6-
10, and the orbit diagrams in Figure 4, certain properties of the system in the
chaotic region such as the maximum and minimum values of the predator size were
fairly insensitive to the change in the delay. This is only a toy model. However, it
suggests that ignoring delay in a model can result in incorrect predictions. Here,
delay could change the dynamics from convergence to a globally asymptotically
stable equilibrium to wild oscillations. It is most likely that in nature, it would
not be possible to distinguish from data, a priori, if the dynamics were chaotic
or periodic, but more importantly it would not necessarily be predictable what
the effect of an increase or a decrease in the delay would be. Hence, our analysis
indicates that one should be extra cautious if trying to manipulate the delay to
achieve a certain result based on model predictions.

Finally it is worth pointing out that the resulting strange attractor in the predator-
prey model studied here bares such a close resemblance to the Mackey-Glass attrac-
tor, a model involving a single delay differential equation to model a simple feedback
system for respiratory control or hematopoietic diseases. Understanding whether
there is a deeper significiance to this relationship may give us a better understanding
of the class of possible strange attractors and warrants further investigation.
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Appendix A. Proofs.

A.1. Proof of Proposition 2.1. Proof. Parts 1 & 2. Assume that (φ(t), ψ(t)) ∈
X. Since the right hand side of (5) is Lipschitz, there exist h > 0 such that solutions
exist and are unique for all t ∈ [0, h]. We will show that solutions are bounded and
hence do not blow up in finite time. Therefore, by the standard results for existence
and uniqueness of solutions for delay differential equations in Driver [5], it will follow
that solutions exist and are unique for all t ≥ 0.

Since φ(0) > 0, and the face where x(t) = 0 is invariant, that x(t) > 0 for all
t > 0 follows by uniqueness of solutions in forward time for initial value problems.
That y(t) > 0 for all t > 0, follows since y′(t) > −sy(t) for all t ∈ [0, τ ] and so
y(t) > 0 for all t ∈ [−τ, τ ]. Arguing inductively on [nτ, (n + 1)τ ], n = 1, 2, . . . , it
follows that y(t) > 0 for all t > 0, where the solution exist.

To show that solutions are bounded above, consider the first equation of (5)

ẋ(t) = x(t)(1− x(t))− y(t)x(t) 6 x(t)(1− x(t)).

It is well-known that for the logistic equation ż(t) = z(t) (1− z(t)), given any ε0 > 0,
there exists T > 0, such that |z(t)| < 1 + ε0 for all t > T . Using a comparison
principle (e.g. [18] Theorem 1.4.1, page 15) x(t) 6 z(t), and so 0 6 x(t) < 1 + ε0
for all t > T .

To prove that y(t) is bounded above, define

w(t) = Y e−sτx(t− τ) + y(t). (22)

Then

ẇ(t) = Y e−sτ
dx(t− τ)

dt
+
dy(t)

dt
,

= −sy(t) + Y e−sτx(t− τ) (1− x(t− τ)) ,

= −sw(t) + Y e−sτx(t− τ) (s+ 1− x(t− τ)) ,

6 −sw(t) +
1

4
Y e−sτ (s+ 1)2,

since
(
x(t− τ)− s+1

2

)2
> 0 implies that x(t−τ) (s+ 1− x(t− τ)) 6 (s+1)2

4 . There-

fore, since z(t) = z(0)e−st + 1
4sY e

−sτ (s+ 1)2(1− e−st) is the solution of the initial
value problem

ż(t) = −sz(t) +
1

4
Y e−sτ (s+ 1)2, z(0) = w(0) > 0,

using a comparison principle it follows that w(t) 6 z(t) for all t > 0. Consequently,
by (22), y(t) 6 w(t) 6 w(0)e−st + 1

4sY e
−sτ (s + 1)2(1 − e−st). Therefore, y(t) is

bounded.

Part 3. Assume that (φ(t), ψ(t)) ∈ X0. Since φ(0) > 0, and the face where
x(t) = 0 is invariant, it follows that x(t) > 0 for all t > 0. Since there exists
θ ∈ [−τ, 0] such that φ(θ)ψ(θ) > 0, take T = τ + θ, and note that 0 6 T 6 τ .
Since y(T ) > 0, either y(T ) > 0 or y(T ) = 0 and by (5), y′(T ) = −sy(T ) +
Y e−sτy(θ)x(θ) = 0 + Y e−sτψ(θ)φ(θ) > 0. In both cases, there exists ε > 0 such
that y(t) > 0 for all t ∈ (T, T + ε]. But this implies that y′(t) > −sy(t) for all
t ∈ [−τ, T + ε + τ ]. Therefore, y(t) > 0 for all t ∈ [T + ε, T + ε + τ ]. By repeating
this argument, it follows that y(t) > 0 for all t > T + ε for any ε > 0. �

http://www.ams.org/mathscinet-getitem?mr=MR2945502&return=pdf
http://dx.doi.org/10.1007/s11071-012-0368-4
http://dx.doi.org/10.1007/s11071-012-0368-4
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A.2. Proof of Theorem 3.1. Proof. Part 1. Evaluating (9) at E0 gives P (λ)|E0 =
(λ+ s)(λ− 1) = 0, which has two real roots λ = −s and λ = 1. Therefore, E0 is a
saddle.

Part 2.(a) Evaluating (9) at E1 gives P (λ)|E1
= (λ+ 1)(λ+ s− Y e−(s+λ)τ ) = 0.

One of the roots is λ = −1. The other roots satisfy g(λ, τ) := (λ + s)e(λ+s)τ = Y.
For any fixed 0 6 τ < τc, there is a real root λ(τ) > 0, such that g(λ(τ), τ) = Y ,
since g(0, τ) < Y and g(λ, τ)→∞ as λ→∞. Hence, E1 is unstable.

Part 2.(b) Next assume that τ > τc. We prove that E1 is globally asymptotically

stable. Since sesτ

Y > 1, ε0 := 1
2

(
s
Y e

sτ − 1
)
> 0, and so by Proposition 2.1, there

exists a T > 0 such that x(t) < 1+ε0 for all t > T . Therefore, for all sufficiently large
t, Y e−sτx(t− τ) < Y e−sτ (1 + ε0) = Y e−sτ

(
1 + 1

2

(
s
Y e

sτ − 1
))

= 1
2Y e

−sτ + s
2 < s,

and so the second equation of (5) can be written ẏ(t) = −sy(t)+ b(t)y(t− τ), where
b(t) := Y e−sτx(t−τ) < s. Choosing α = s/2 in Kuang [17], (Example 5.1, Chapter
2, page 32), since b2(t) < s2 = 4(s − α)α = 4(s − s/2)(s/2), y(t) → 0 as t → ∞.
Hence, for any ε > 0, there exists T1 such that 0 < y(t) < ε for t > T1. From the
first equation of (5), for any 0 < ε < 1, x(t) (1− x(t)− ε) < ẋ(t) < x(t) (1− x(t)) .
Note that all solutions of ż(t) = z(t)(1− z(t)) converge to z(t) = 1 and all solutions
of ż(t) = z(t)(1 − z(t) − ε) converge to z(t) = 1 − ε as t → ∞. By a standard
comparison principle, for any solution x(t) of (5), x(t) → 1 as t → ∞. Therefore,
E1 is globally asymptotically stable.

Part 3. Existence of E+ follows from (7).
Part 3.(a) When τ = 0, model (5) reduces to a well studied model involving

only ordinary differential equations. That E+ is globally asymptotically stable in
this case is well known and can easily be proved using phase plane analysis and the
Bendixson-negative criterion to rule out periodic solutions.

Part 3.(b) The proof is similar to the approach used in Chapter 5.7 of Smith and
Thieme [27]. The predator reproduction number at a constant level of x is given by

R(x) = Y e−sτ

s x. Then, since E+ exists,

R(1) > 1 and R(x+) = 1. (23)

Let, x∞ ≡ lim supt→∞ x(t) and y∞ ≡ lim supt→∞ y(t). Then, we claim

x∞ ≥ sesτ

Y
. (24)

Suppose not, i.e., that x∞ is smaller than this minimum. Applying the fluctuation
lemma (see Hirsch et. al. [16] or Smith and Thieme [27]) to the y equation in (5),
there exists a monotone increasing sequence of times {tn} → ∞ as n → ∞ such
that ẏ(tn) = 0 and y(tn) → y∞ as n → ∞. Therefore, 0 = ẏ(tn) = −sy(tn) +
Y e−sτx(tn− τ)y(tn− τ). Letting n→∞, we obtain 0 ≤ (−s+Y e−sτx∞)y∞, since
lim supn→∞ x(tn−τ)y(tn−τ) ≤ x∞y∞. The term in the brackets in this inequality
is negative, since we are assuming (24) does not hold. It follows that y∞ = 0.
But then, applying the fluctuation lemma to the x equation in (5), it follows that

x∞ = 1 > sesτ

Y , contradicting our assumption that (24) is not satisfied. Hence, (24)
holds.

Let Φ : R+ × X → X denote the semiflow generated by model (5). Consider
the function ρ : X → R+, defined for (φ(t), ψ(t)) ∈ X0 by ρ((φ, ψ)) = φ(0) so
that ρ(Φ(t, (φ, ψ))) = x(t). By part 3 of Proposition 2.1, ρ((φ, ψ))) > 0 implies
that ρ(Φ(t, (φ, ψ))) > 0 for all t ≥ 0. Therefore, the semi-flow is uniformly weakly
ρ-persistent. By a similar argument to that given in Theorem 5.29 of [27] together
with Proposition 2.1, Φ is a continuous semiflow that has a compact attractor of



214 GUIHONG FAN AND GAIL S. K. WOLKOWICZ

bounded sets. Therefore, φ is uniformly ρ-persistent by Theorem 5.2 of [27], and
hence there exists ε1 > 0 such that x∞ ≡ lim inft→∞ x(t) ≥ ε1, for all solutions
with x(0) > 0.

Before, we show that if (φ, ψ) ∈ X0, there exists ε2 > 0 such that lim inft→∞ y(t) > ε2,

we use Laplace transforms to show that if (φ, ψ) ∈ X0, then R(x∞) ≤ 1. We

denote the Laplace transform of a function f(t) as f̂(λ) =
∫∞
0

e−λtf(t) dt, and note
that the Laplace transform of y(t) exists for all λ > 0, since y(t) is bounded by
Proposition 2.1. Taking the Laplace transform on both sides of the y equation of
(5) and simplifying we obtain:

(λ+ s)ŷ(λ) = y(0) + Y e−(s+λ)τ x̂y(λ) + Y e−(s+λ)τ
∫ 0

−τ
e−λτx(t)y(t) dt.

There exists δ > 0 such that x(t) ≥ (x∞ − δ) for all t ≥ 0, and so x̂y(λ) ≥
(x∞ − δ)ŷ(λ).

(λ+ s)ŷ(λ) ≥ Y e−(s+λ)τ (x∞ − δ)ŷ(λ).

By part 3 of Proposition 2.1, y(t) > 0 for all sufficiently large t, and hence ŷ(λ) > 0,
we can divide by ŷ(λ) to obtain

(λ+ s) ≥ Y e−(s+λ)τ (x∞ − δ).

After a shift of time, if necessary, we can take the limit as δ, λ → 0+ to obtain
s ≥ Y e−sτx∞. This is equivalent to

R(x∞) ≤ 1. (25)

Define ρ : X → R+ by ρ((φ, ψ)) = min {φ(0), ψ(0)}.
Then, ρ(Φ(t, (φ, ψ))) = min{x(t), y(t)}. Suppose (φ, ψ) ∈ X0 and y(t) is not uni-
formly persistent. By part 3 of Proposition 2.1, shifting time if necessary, there is no
loss of generality if we assume that ψ(0) = y(0) > 0. Therefore, ρ(Φ(t, (φ, ψ))) > 0
for all t ≥ 0. Since by Proposition 2.1, Φ has a compact attractor of bounded
sets, by Theorem 5.2 in [27] we need only show that Φ is uniformly weakly ρ-
persistent. Suppose not. Recall that we have already shown that x∞ > ε1 > 0.
Take any ε ∈ (0, ε1). Then, there exists a solution with x(0) > 0 and y(0) > 0 such
that y∞ < ε. Apply the fluctuation lemma to the x equation of (5). Therefore,
0 > x∞(1 − x∞ − ε). Taking ε > 0 sufficiently small, since R(1) > 1 by (23) and
R(x) is increasing, it follows that R(x∞) > 1, contradicting (25). �

A.3. Proof of Lemma 3.2: Roots of the characteristic equation cannot
bifurcate in from infinity. Proof. In Kuang [17] (Theorem 1.4, Chapter 3,
page 66), taking n = 2 and g(λ, τ) = p(τ)λ+ (qλ+ c(τ))e−λτ + α(τ), since

lim sup
Reλ>0,|λ|→∞

|λ−2g(λ, τ)| = 0 < 1,

no root of (10) with positive real part can enter from infinity as τ increases from 0.
Since, when τ = 0 all roots have negative real parts, the result follows. �

A.4. Proof of Theorem 3.3. Proof. Using the quadratic formula to solve for ω2

in (13), the roots must satisfy

ω2
± =

1

2

(
q2 − p2(τ) + 2α(τ)±

√
(q2 − p2(τ) + 2α(τ))2 − 4 (α2(τ)− c2(τ))

)
.
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Since

q2 − p2(τ) + 2α(τ) = s2 − s2
(

1 +
esτ

Y

)2

+ 2
s2esτ

Y
= −

(
sesτ

Y

)2

< 0,

ω2
− is either complex or negative for any τ > 0, and ω2

+ is positive, if, and only if,

(α2(τ)− c2(τ)) = −3s2
(
sesτ

Y
− 1

3

)(
sesτ

Y
− 1

)
< 0.

This is the case, if, and only if, sesτ

Y < 1
3 or sesτ

Y > 1. However, E+ only exists

when x+(τ) = sesτ

Y < 1. Therefore, a real positive root exists if, and only if,

x+(τ) = sesτ

Y < 1
3 . This implies that τ < τ∗. Hence, for τ ∈ [0, τ∗), a real positive

root ω+(τ) exists, and is defined explicitly by (16).
If τ = τ∗, then ω+(τ) = 0, and if τ > τ∗, then either ω+(τ) is not real or E+

does not exist. �

A.5. Properties of the functions h1(ω, τ) and h2(ω, τ) defined in (17).

Lemma A.1. Assume that E+ exists and that s
Y < 1

3 .

1. If τ ∈ [0, τ∗], then h21(ω+(τ), τ) + h22(ω+(τ), τ) = 1.
2. h1(ω+(τ∗), τ∗) = 0. If 0 6 τ < τ∗, then h1(ω+(τ), τ) > 0.
3. h2(ω+(τ∗), τ∗) = −1. If 0 6 τ < τ∗, then −1 < h2(ω+(τ), τ) < 1.

Proof. Part 1. Since h1(ω+(τ), τ) is equal to the right-hand side of (12a), and
h2(ω+(τ), τ) is equal to the right-hand side of (12b), where ω = ω+(τ) satisfies
(13), it follows that h21(ω+(τ), τ) + h22(ω+(τ), τ) = 1.

Part 2. By Theorem 3.3, ω+(τ∗) = 0, and so h1(ω+(τ∗), τ∗) = 0. Since for t ∈
[0, τ∗), x+(τ) < 1

3 and by Theorem 3.3, ω+(τ) > 0, it follows that the denominator
of h1(τ, ω+(τ)) is always positive. Hence, h1(ω+(τ), τ) > 0, if, and only if,

0 < s(1− x+(τ)) + x+(τ)(1− 2x+(τ))− ω2
+(τ)

= s(1− x+(τ)) + x+(τ)(1− 2x+(τ))

−1

2

(
−x2+(τ) +

√
x4+(τ) + 4s2(3x+(τ)− 1)(x+(τ)− 1)

)
.

This is equivalent to,

1

2

√
x4+(τ) + 4s2(3x+(τ)− 1)(x+(τ)− 1) < s(1− x+(τ)) + x+(τ)(1− 3

2
x+(τ)).

Since x+(τ) < 1
3 , both sides of the above inequality are positive. Squaring, both

sides yields,

1

4

(
x4+(τ) + 4s2(1− 3x+(τ))(1− x+(τ))

)
< s2(1− x+(τ))2 + x2+(τ)(1− 3

2
x+(τ))2

+ 2sx+(τ)(1− x+(τ)(1− 3

2
x+(τ)).

But this is equivalent to,

0 < 2s2x+(τ)(1− x+(τ)) + x2+(τ)(1− 2x+(τ))(1− x+(τ))

+ 2sx+(τ)(1− x+(τ)(1− 3

2
x+(τ)).
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This last inequality is satisfied, since by part 2 of Theorem 3.3, x+(τ) < 1
3 , and so

h1(ω+(τ), τ) > 0 for τ ∈ [0, τ∗).

Part 3. That h2((ω+(τ∗), τ∗) = −1, follows from a straightforward calculation,
after substituting ω+(τ∗) = 0 and x+(τ∗) = 1

3 in (17b). For τ ∈ [0, τ∗), the result
follows immediately, by parts 1 and 2. �

A.6. Proof of Theorem 3.4. Proof. Assume that τ̄ ∈ (0, τ∗). By Remark 3,
(10) has a pair of pure imaginary eigenvalues, if and only if, τ̄ = τ jn ∈ (0, τ∗), for
some n > 0, 0 6 j 6 jn. Since a necessary condition for a root of (10) to exist is
that (13) holds, and hence ω(τ̄) = ω+(τ̄) given by (16), there can be at most one
pair of pure imaginary roots for each such τ = τ̄ , and hence if any such roots exist,
they are simple, and no other root of (10) is an integer multiple.

In Beretta and Kuang, [3] (Theorem 4.1, equation (4.1) p.1157), it is shown that

sign

(
d

dτ
Re(λ(τ))

) ∣∣∣
τ=τnj

= sign

(
d

dτ

[
τω+(τ)− (θ(τ) + 2nπ)

ω+(τ)

]) ∣∣∣
τ=τjn

.

After differentiating, and noting that ω+(τjn) > 0 and τjnω+(τjn)− (θ(τjn)+2nπ) = 0, it is easy
to see that the term on the right has the same sign as

(
d
dτ

[
τω+(τ)− (θ(τ) + 2nπ)

]) ∣∣
τ=τ

j
n
.

It follows that transversality holds whenever the graphs of τω+(τ) and θ(τ) have
different slopes at τ jn. �

A.7. Proof of Corollary 3.5. Proof. Parts 1, 2 and 3 follow immediately from
Theorem 3.4, since for τ ∈ [0, τ∗], both curves are continuous, by part 3 of Lemma A.1

and Remark 4, θ(τ) ∈ (0, π), and τω+(τ) > 0 with equality for τ = 0 and τ = τ∗.
(See Figure 1 for typical examples.)

Next consider local stability of E+ when it exists, i.e. τ ∈ [0, τc). By part 3(a) of
Theorem 3.1, E+ is globally asymptotically stable when τ = 0. By Lemma 3.2, E+

can only change stability for 0 6 τ < τc, if a pair of roots cross the imaginary axis.
As τ increases from 0, by part 3, the first possible such crossing occurs for τ = τ10 .
Hence, E+ is locally asymptotically stable for τ ∈ [0, τ10 ). When τ = τc, E+ and E1

coalesce, and by part 2(b) of Theorem 3.1, E1 is globally asymptotically stable for
τ > τc. Since again by Lemma 3.2, E+ can only change stability for 0 6 τ < τc, if

a pair of roots cross the imaginary axis, and τ j00 is the last possible such crossing,

E+ must be locally asymptotically stable for τ ∈ (τ j00 , τc). �
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